Source code for HTMACat.catkit.gen.surface

from .. import Gratoms
from . import symmetry
from . import utils
from . import adsorption
from . import defaults
import numpy as np
import itertools
import warnings
import scipy
import ase

try:
    from math import gcd
except ImportError:
    from fractions import gcd


[docs]class SlabGenerator: """Class for generation of slab unit cells from bulk unit cells. Many surface operations rely upon / are made easier through the bulk basis cell they are created from. The SlabGenerator class is designed to house these operations. Return the miller indices associated with the users requested values. Follows the following steps: - Convert Miller-Bravais notation into standard Miller index. - (optional) Ensure the bulk cell is in its standard form. - Convert the indices to the cell for the primitive lattice. - Reduce the indices by their greatest common divisor. Parameters ---------- bulk : Atoms object Bulk system to be converted into slab. miller_index : list (3,) or (4,) Miller index to construct surface from. If length 4, Miller-Bravais notation is assumed. layers : int Number of layers to include in the slab. A slab layer is defined as a unique z-coordinate. vacuum : float Angstroms of vacuum to apply to the slab. fixed : int Number of slab layers to constrain. layer_type : 'angs', 'trim', 'stoich', or 'sym' Determines how to perform slab layering. 'angs': Layers denotes the thickness of the slab in Angstroms. 'trim': The slab will be trimmed to a number of layers equal to the exact number of unique z-coordinates. Useful for precision control. 'stoich' : Constraints any slab generated to have the same stoichiometric ratio as the provided bulk. 'sym' : Return a slab which is inversion symmetric. i.e. The same on both sides. attach_graph : bool Attach the connectivity graph generated from the bulk structure. This is only necessary for fingerprinting and setting it to False can save time. Surface atoms will be found regardless. standardize_bulk : bool Covert the bulk input to its standard form before and produce the cleave from it. This is highly recommended as Miller indices are not defined for non-standard cells. tol : float Tolerance for floating point rounding errors. """ def __init__( self, bulk, miller_index, layers, vacuum=None, fixed=None, layer_type="ang", attach_graph=True, standardize_bulk=False, primitive=True, tol=1e-8, ): self.layers = layers self.vacuum = vacuum self.fixed = fixed self.tol = tol self.layer_type = layer_type self.standardized = standardize_bulk self.primitive = primitive self.attach_graph = attach_graph self.unique_terminations = None self.slab_basis = None self.slab = None miller_index = np.array(miller_index) if len(miller_index) == 4: miller_index[[0, 1]] -= miller_index[2] miller_index = np.delete(miller_index, 2) miller_index = (miller_index / utils.list_gcd(miller_index)).astype(int) # Store the Miller indices associated with the standard cell. self.miller_index = miller_index if standardize_bulk: bulk = symmetry.get_standardized_cell(bulk, tol=1e-2) else: warnings.warn( "Not using a standardized bulk will result in an arbitrary " "Miller index. To get ensure you are using the correct " "miller index, use standardize_bulk=True" ) if primitive: primitive_bulk = symmetry.get_standardized_cell(bulk, primitive=True, tol=1e-2) miller_index = convert_miller_index(miller_index, bulk, primitive_bulk) else: primitive_bulk = bulk self._bulk = self.align_crystal(primitive_bulk, miller_index)
[docs] def align_crystal(self, bulk, miller_index): """Return an aligned unit cell from bulk unit cell. This alignment rotates the a and b basis vectors to be parallel to the Miller index. Parameters ---------- bulk : Atoms object Bulk system to be standardized. miller_index : list (3,) Miller indices to align with the basis vectors. Returns ------- new_bulk : Gratoms object Standardized bulk unit cell. """ del bulk.constraints if len(np.nonzero(miller_index)[0]) == 1: mi = max(np.abs(miller_index)) new_lattice = scipy.linalg.circulant(miller_index[::-1] / mi).astype(int) else: h, k, l = miller_index p, q = utils.ext_gcd(k, l) a1, a2, a3 = bulk.cell k1 = np.dot(p * (k * a1 - h * a2) + q * (l * a1 - h * a3), l * a2 - k * a3) k2 = np.dot(l * (k * a1 - h * a2) - k * (l * a1 - h * a3), l * a2 - k * a3) if abs(k2) > self.tol: i = -int(np.round(k1 / k2)) p, q = p + i * l, q - i * k a, b = utils.ext_gcd(p * k + q * l, h) c1 = (p * k + q * l, -p * h, -q * h) c2 = np.array((0, l, -k)) // abs(gcd(l, k)) c3 = (b, a * p, a * q) new_lattice = np.array([c1, c2, c3]) scaled = np.linalg.solve(new_lattice.T, bulk.get_scaled_positions().T).T scaled -= np.floor(scaled + self.tol) new_bulk = Gratoms( positions=bulk.positions, numbers=bulk.get_atomic_numbers(), magmoms=bulk.get_initial_magnetic_moments(), pbc=True, ) if not self.attach_graph: del new_bulk._graph new_bulk.set_scaled_positions(scaled) new_bulk.set_cell(np.dot(new_lattice, bulk.cell), scale_atoms=True) # Align the longest of the ab basis vectors with x d = np.linalg.norm(new_bulk.cell[:2], axis=1) if d[1] > d[0]: new_bulk.cell[[0, 1]] = new_bulk.cell[[1, 0]] a = new_bulk.cell[0] a3 = np.cross(a, new_bulk.cell[1]) / np.max(d) ase.build.rotate(new_bulk, a3, (0, 0, 1), a, (1, 0, 0)) # Ensure the remaining basis vectors are positive in their # corresponding axis for i in range(1, 3): if new_bulk.cell[i][i] < 0: new_bulk.cell[i] *= -1 new_bulk.wrap(eps=1e-3) return new_bulk
[docs] def get_unique_terminations(self): """Determine the fractional coordinate shift that will result in a unique surface termination. This is not required if bulk standardization has been performed, since all available z shifts will result in a unique termination for a primitive cell. Returns ------- unique_shift : array (n,) Fractional coordinate shifts which will result in unique terminations. """ if self.unique_terminations is not None: return self.unique_terminations zcoords = utils.get_unique_coordinates(self._bulk) if len(zcoords) > 1: itol = self.tol**-1 zdiff = np.cumsum(np.diff(zcoords)) zdiff = np.floor(zdiff * itol) / itol sym = symmetry.Symmetry(self._bulk, self.tol) rotations, translations = sym.get_symmetry_operations(affine=False) # Find all symmetries which are rotations about the z-axis zsym = np.abs(rotations) zsym[:, 2, 2] -= 1 zsym = zsym[:, [0, 1, 2, 2, 2], [2, 2, 2, 0, 1]] zsym = np.argwhere(zsym.sum(axis=1) == 0) ztranslations = translations[zsym, -1] % 1 z_symmetry = np.unique(ztranslations) if len(z_symmetry) > 1: unique_shift = np.argwhere(zdiff < z_symmetry[1]) + 1 unique_shift = np.append(0, zcoords[unique_shift]) else: unique_shift = zcoords else: unique_shift = zcoords self.unique_terminations = unique_shift self.slab_basis = [None] * len(unique_shift) return unique_shift
[docs] def get_slab_basis(self, iterm=0, maxn=20): """Return a list of all terminations which have been properly shifted and with an appropriate number of layers added. This function is mainly for performance, to prevent looping over other operations which are not related the size of the slab. This step also contains periodically constrained orthogonalization of the c basis. This implementation only works if the a anb b basis vectors are properly aligned with the x and y axis. This is strictly to assist the correct identification of surface atoms. Only produces the terminations requested as a lazy evaluator. Parameters ---------- iterm : int Index of the slab termination to return. maxn : int The maximum integer component to search for a more orthogonal bulk. Returns ------- ibasis : Gratoms object Prepared, ith basis. """ terminations = self.get_unique_terminations() if self.slab_basis[iterm] is not None: ibasis = self.slab_basis[iterm].copy() return ibasis _basis = self._bulk.copy() ibasis = _basis.copy() if iterm > 0: zshift = terminations[iterm] scaled_positions = ibasis.get_scaled_positions() scaled_positions[:, 2] -= zshift - self.tol ibasis.set_scaled_positions(scaled_positions) ibasis.wrap(pbc=True) bulk_layers = utils.get_unique_coordinates(_basis) if self.layer_type != "trim": height = np.abs(self._bulk.cell[2][2]) minimum_repetitions = np.ceil(self.layers / height) else: minimum_repetitions = np.ceil(self.layers / len(bulk_layers)) ibasis *= (1, 1, int(minimum_repetitions)) # Get difference in the 2nd components of the b and c # basis, this is a good starting guess for the needed # value of the 2nd component (+/- 2 for safety) div = ibasis.cell[2][1] / ibasis.cell[1][1] sign = -np.sign(div) if sign == 0: sign = 1 m = np.ceil(np.abs(div)) + 1 # Try to be smart and only search a limited space search = np.mgrid[maxn : -maxn - 1 : -1, sign * m : m - 4 * sign : -sign, 1:2] search = search.T.reshape(-1, 3) # Need the reciprocal unit cell. recp = np.linalg.inv(ibasis.cell).T normal = np.dot(self.miller_index, recp) normal /= np.linalg.norm(normal) # Compute the lengths of the possible transformed vectors # and the cosine of the vector normal to the miller plane. vectors = np.dot(search, ibasis.cell) length = np.linalg.norm(vectors, axis=1) angles = np.abs(np.dot(vectors, normal) / length) # Find the cosine closest to 1 and the smallest lengths sort = np.lexsort([angles, length]) scale = np.eye(3) scale[2] = search[sort[0]] newcell = np.dot(scale, ibasis.cell) ibasis.set_cell(newcell) ibasis.wrap() exbasis = ibasis * (1, 1, 2) connectivity = utils.get_voronoi_neighbors(exbasis) n = len(ibasis) diff = connectivity[:n, n:].sum(axis=1) surf_atoms = diff != 0 if np.all(diff): warnings.warn( "Your slab has no bulk atoms and may be too thin " "to identify surface atoms correctly. This may cause " "surface adsorption site identification to fail." ) # TODO: Graph generation needs to go here once handling of # unit cell repetitions is implemented. scaled_zpositions = ibasis.get_scaled_positions()[:, 2] + self.tol scaled_zpositions = np.round(scaled_zpositions % 1 + self.tol, 4) indices = np.argwhere(surf_atoms).flatten() zcoords = scaled_zpositions - np.mean(scaled_zpositions) top = indices[zcoords[indices] >= 0] bottom = indices[zcoords[indices] < 0] ibasis.set_surface_atoms(top=top, bottom=bottom) self.slab_basis[iterm] = ibasis return ibasis
[docs] def get_slab(self, size=1, iterm=0): """Generate a slab from the bulk structure. This function is meant specifically for selection of an individual termination or enumeration through surfaces of various size. This function will orthogonalize the c basis vector and align it with the z-axis which breaks bulk symmetry along the z-axis. Parameters ---------- size : int, array_like (2,) or (2, 2) Size of the unit cell to create as described in :meth:`set_size`. iterm : int A termination index in reference to the list of possible terminations. Returns ------- slab : Gratoms object The modified basis slab produced based on the layer specifications given. """ slab = self.get_slab_basis(iterm).copy() slab = self.set_size(slab, size) # Orthogonalize the z-coordinate # Breaks bulk periodicity in the c-basis slab.cell[2] = [0, 0, slab.cell[2][2]] slab.set_pbc([1, 1, 0]) if slab.cell[1][0] < 0: slab = transform_ab(slab, [[-1, 0], [0, 1]]) # Trim the bottom of the cell, bulk symmetry may be lost if self.layer_type == "trim": zlayers = utils.get_unique_coordinates(slab) reverse_sort = np.sort(zlayers)[::-1] ncut = reverse_sort[: self.layers][-1] * slab.cell[2][2] zpos = slab.positions[:, 2] index = np.arange(len(slab)) del slab[index[zpos - ncut < -self.tol]] slab.cell[2][2] -= ncut slab.translate([0, 0, -ncut]) tl = np.argmax(slab.get_scaled_positions()[:, 2]) translation = slab[tl].position.copy() translation[2] = 0 slab.translate(-translation) slab.wrap() if self.vacuum: slab.center(vacuum=self.vacuum, axis=2) utils.get_unique_coordinates(slab, tag=True) if self.layer_type == "sym": slab = self.make_symmetric(slab) roundoff = np.isclose(slab.cell, 0) slab.cell[roundoff] = 0 ind = np.lexsort(slab.positions.T) slab = slab[ind] if self.fixed: tags = slab.get_tags() constraints = ase.constraints.FixAtoms(mask=tags > (tags.max() - self.fixed)) slab.set_constraint(constraints) self.slab = slab return slab
[docs] def adsorption_sites(self, slab, **kwargs): """Helper function to return the adsorption sites of the provided slab. Parameters ---------- slab : atoms object The slab to find adsorption sites for. Assumes you are using the same basis. Returns ------- output : tuple (n, n) | (n, n, n) Coordinates and connectivity of the adsorption sites. The symmetry indices can also be returned. """ output = adsorption.get_adsorption_sites(slab=slab, **kwargs) return output
[docs] def set_size(self, slab, size): """Set the size of a slab based one of three methods. 1. An integer value performs a search of valid matrix operations to perform on the ab-basis vectors to return a set which with a minimal sum of distances and an angle closest to 90 degrees. 2. An array_like of length 2 will multiply the existing basis vectors by that amount. 3. An array of shape (2, 2) will be interpreted as matrix notation to multiply the ab-basis vectors by. Parameters ---------- slab : Atoms object Slab to be made into the requested size. size : int, array_like (2,) or (2, 2) Size of the unit cell to create as described above. Returns ------- supercell : Gratoms object Supercell of the requested size. """ supercell = slab if isinstance(size, (int, np.integer)): a = max(int(size / 2), 1) + size % 2 + 1 T = np.mgrid[-a : a + 1, -a : a + 1].reshape(2, -1).T metrics = [] search_space = itertools.product(T, repeat=2) for i, M in enumerate(search_space): M = np.array(M) if ~np.isclose(abs(np.linalg.det(M)), size): continue vector = np.dot(M.T, slab.cell[:2, :2]) d = np.linalg.norm(vector, axis=1) angle = np.dot(vector[0], vector[1]) / np.prod(d) diff = np.diff(d)[0] # obtuse angle if angle < 0 or diff < 0: continue metrics += [[d.sum(), angle, M]] if metrics: order = [0, 1] if defaults.get("orthogonal"): order = [1, 0] matrix = sorted(metrics, key=lambda x: (x[order[0]], x[order[1]]))[0][-1] supercell = transform_ab(supercell, matrix) elif isinstance(size, (list, tuple, np.ndarray)): size = np.array(size, dtype=int) if size.shape == (2,): supercell *= (size[0], size[1], 1) elif size.shape == (2, 2): supercell = transform_ab(supercell, size) if self.attach_graph: # TODO: Creating the graph at this point is not ideal. # Need to be able to handle expansion of the unit cell # before this can be moved back to basis creation n = len(supercell) exsupercell = supercell * (1, 1, 2) # Look into making bulk more orthogonal exsupercell.wrap() connectivity = utils.get_voronoi_neighbors(exsupercell) edges = utils.connectivity_to_edges(connectivity[:n, :n]) supercell.graph.add_weighted_edges_from(edges, weight="bonds") return supercell
[docs] def make_symmetric(self, slab): """Returns a symmetric slab. Note, this will trim the slab potentially resulting in loss of stoichiometry. """ sym = symmetry.Symmetry(slab) inversion_symmetric = sym.get_point_group(check_laue=True)[1] # Trim the cell until it is symmetric while not inversion_symmetric: tags = slab.get_tags() bottom_layer = np.max(tags) del slab[tags == bottom_layer] sym = symmetry.Symmetry(slab) inversion_symmetric = sym.get_point_group(check_laue=True)[1] if len(slab) <= len(self._bulk): warnings.warn("Too many sites removed, please use a larger " "slab size.") break return slab
[docs]def transform_ab(slab, matrix, tol=1e-5): """Transform the slab basis vectors parallel to the z-plane by matrix notation. This can result in changing the slabs cell size. This can also result in very unusual slab dimensions, use with caution. Parameters ---------- slab : Atoms object The slab to be transformed. matrix : array_like (2, 2) The matrix notation transformation of the a and b basis vectors. tol : float Float point precision tolerance. Returns ------- slab : Atoms object Slab after transformation. """ M = np.eye(3) M[:2, :2] = np.array(matrix).T newcell = np.dot(M, slab.cell) scorners_newcell = np.array([[0, 0], [1, 0], [0, 1], [1, 1]]) corners = np.dot(scorners_newcell, newcell[:2, :2]) scorners = np.linalg.solve(slab.cell[:2, :2].T, corners.T).T rep = np.ceil(scorners.ptp(axis=0)).astype(int) slab *= (rep[0], rep[1], 1) slab.set_cell(newcell) coords = slab.get_scaled_positions() original_index = np.arange(coords.shape[0]) periodic_match = original_index.copy() for i, j in enumerate(periodic_match): if i != j: continue matched = utils.matching_sites(coords[i], coords) periodic_match[matched] = i repeated = np.where(periodic_match != original_index) del slab[repeated] # Align the first basis vector with x sign = np.sign(slab.cell[2][2]) slab.rotate(slab.cell[0], "x", rotate_cell=True) if sign != np.sign(slab.cell[2][2]): slab.arrays["surface_atoms"] *= -1 if slab.cell[1][1] < 0: slab.cell[1] *= -1 if slab.cell[2][2] < 0: slab.translate([0, 0, -slab.cell[2][2]]) slab.cell[2][2] = -slab.cell[2][2] return slab
[docs]def convert_miller_index(miller_index, atoms1, atoms2): """Return a converted miller index between two atoms objects.""" recip1 = utils.get_reciprocal_vectors(atoms1) recip2 = utils.get_reciprocal_vectors(atoms2) converted_index = np.dot(miller_index, np.dot(recip1, np.linalg.inv(recip2))) converted_index = np.round(converted_index) converted_index = (converted_index / utils.list_gcd(converted_index)).astype(int) if converted_index[0] < 0: converted_index *= -1 return converted_index
[docs]def generate_indices(max_index): """Return an array of miller indices enumerated up to values plus or minus some maximum. Filters out lists with greatest common divisors greater than one. Only positive values need to be considered for the first index. Parameters ---------- max_index : int Maximum number that will be considered for a given surface. Returns ------- unique_index : ndarray (n, 3) Unique miller indices """ grid = np.mgrid[ max_index:-1:-1, max_index : -max_index - 1 : -1, max_index : -max_index - 1 : -1 ] index = grid.reshape(3, -1) gcd = utils.list_gcd(index) unique_index = index.T[np.where(gcd == 1)] return unique_index
[docs]def get_unique_indices(bulk, max_index): """Returns an array of miller indices which will produce unique surface terminations based on a provided bulk structure. Parameters ---------- bulk : Atoms object Bulk structure to get the unique miller indices. max_index : int Maximum number that will be considered for a given surface. Returns ------- unique_millers : ndarray (n, 3) Symmetrically distinct miller indices for a given bulk. """ sym = symmetry.Symmetry(bulk) operations = sym.get_symmetry_operations() unique_index = generate_indices(max_index) unique_millers = [] for i, miller in enumerate(unique_index): affine_point = np.insert(miller, 3, 1) symmetric = False for affine_matrix in operations: operation = np.dot(affine_matrix, affine_point)[:3] match = utils.matching_coordinates(operation, unique_millers) if len(match) > 0: symmetric = True break if not symmetric: unique_millers += [miller] unique_millers = np.flip(unique_millers, axis=0) return unique_millers
[docs]def get_degenerate_indices(bulk, miller_index): """Return the miller indices which are degenerate to a given miller index for a particular bulk structure. Parameters ---------- bulk : Atoms object Bulk structure to get the degenerate miller indices. miller_index : array_like (3,) Miller index to get the degenerate indices for. Returns ------- degenerate_indices : array (N, 3) Degenerate miller indices to the provided index. """ miller_index = np.asarray(miller_index) miller_index = np.divide(miller_index, utils.list_gcd(miller_index)) sym = symmetry.Symmetry(bulk) affine_matrix = sym.get_symmetry_operations() affine_point = np.insert(miller_index, 3, 1) symmetric_indices = np.dot(affine_point, affine_matrix)[:, :3] degenerate_indices = np.unique(symmetric_indices, axis=0) degenerate_indices = np.flip(degenerate_indices, axis=0).astype(int) return degenerate_indices