Source code for HTMACat.catkit.gen.utils.coordinates

import numpy as np


[docs]def expand_cell(atoms, cutoff=None, padding=None): """Return Cartesian coordinates atoms within a supercell which contains repetitions of the unit cell which contains at least one neighboring atom. Parameters ---------- atoms : Atoms object Atoms with the periodic boundary conditions and unit cell information to use. cutoff : float Radius of maximum atomic bond distance to consider. padding : ndarray (3,) Padding of repetition of the unit cell in the x, y, z directions. e.g. [1, 0, 1]. Returns ------- index : ndarray (N,) Indices associated with the original unit cell positions. coords : ndarray (N, 3) Cartesian coordinates associated with positions in the supercell. offsets : ndarray (M, 3) Integer offsets of each unit cell. """ cell = atoms.cell pbc = atoms.pbc pos = atoms.positions if padding is None and cutoff is None: diags = np.sqrt( (np.dot([[1, 1, 1], [-1, 1, 1], [1, -1, 1], [-1, -1, 1]], cell) ** 2).sum(1) ) if pos.shape[0] == 1: cutoff = max(diags) / 2.0 else: dpos = (pos - pos[:, None]).reshape(-1, 3) Dr = np.dot(dpos, np.linalg.inv(cell)) D = np.dot(Dr - np.round(Dr) * pbc, cell) D_len = np.sqrt((D**2).sum(1)) cutoff = min(max(D_len), max(diags) / 2.0) latt_len = np.sqrt((cell**2).sum(1)) V = abs(np.linalg.det(cell)) padding = pbc * np.array(np.ceil(cutoff * np.prod(latt_len) / (V * latt_len)), dtype=int) offsets = np.mgrid[ -padding[0] : padding[0] + 1, -padding[1] : padding[1] + 1, -padding[2] : padding[2] + 1 ].T tvecs = np.dot(offsets, cell) coords = pos[None, None, None, :, :] + tvecs[:, :, :, None, :] ncell = np.prod(offsets.shape[:-1]) index = np.arange(len(atoms))[None, :].repeat(ncell, axis=0).flatten() coords = coords.reshape(np.prod(coords.shape[:-1]), 3) offsets = offsets.reshape(ncell, 3) return index, coords, offsets
[docs]def trilaterate(centers, r, zvector=None): """Find the intersection of two or three spheres. In the case of two sphere intersection, the z-coordinate is assumed to be an intersection of a plane whose normal is aligned with the points and perpendicular to the positive z-coordinate. If more than three spheres are supplied, the centroid of the points is returned (no radii used). Parameters ---------- centers : list | ndarray (n, 3) Cartesian coordinates representing the center of each sphere r : list | ndarray (n,) The radii of the spheres. zvector : ndarray (3,) The vector associated with the upward direction for under-specified coordinations (1 and 2). Returns ------- intersection : ndarray (3,) The point where all spheres/planes intersect. """ if zvector is None: zvector = np.array([0, 0, 1]) if len(r) == 1: return centers[0] + r[0] * zvector elif len(r) > 3: centroid = np.sum(centers, axis=0) / len(centers) centroid += np.mean(r) / 2 * zvector return centroid vec1 = centers[1] - centers[0] uvec1 = vec1 / np.linalg.norm(vec1) d = np.linalg.norm(vec1) if len(r) == 2: x0 = d**2 - r[0] ** 2 + r[1] ** 2 x = d - x0 / (2 * d) a = np.sqrt(4 * d**2 * r[1] ** 2 - x0**2) z = 0.5 * (1 / d) * a if np.isnan(z): z = 0.01 h = z * zvector intersection = centers[0] + uvec1 * x + h elif len(r) == 3: vec2 = centers[2] - centers[0] i = np.dot(uvec1, vec2) vec2 = vec2 - i * uvec1 uvec2 = vec2 / np.linalg.norm(vec2) uvec3 = np.cross(uvec1, uvec2) j = np.dot(uvec2, vec2) x = (r[0] ** 2 - r[1] ** 2 + d**2) / (2 * d) y = (r[0] ** 2 - r[2] ** 2 - 2 * i * x + i**2 + j**2) / (2 * j) z = np.sqrt(r[0] ** 2 - x**2 - y**2) if np.isnan(z): z = 0.01 intersection = centers[0] + x * uvec1 + y * uvec2 + z * uvec3 return intersection
[docs]def get_unique_xy(xyz_coords, cutoff=0.1): """Return the unique coordinates of an atoms object for the requrested atoms indices. Z-coordinates are projected to maximum z-coordinate by default. Parameters ---------- xyz_coords : ndarray (n, 3) Cartesian coordinates to identify unique xy positions from. cutoff : float Distance in Angstrons to consider xy-coordinate unique within. Returns ------- xy_pos : ndarray (m, 3) Unique xy coordinates projected onto a maximal z coordinate. """ xyz_coords[:, -1] = np.max(xyz_coords[:, -1]) xy_copies = [] for i, p in enumerate(xyz_coords[:, :-1]): if i in xy_copies: continue dis = xyz_coords[:, :-1][:, None] - p match = np.where(abs(dis).sum(axis=2).T < cutoff)[1] xy_copies += match[1:].tolist() xyz_coords = np.delete(xyz_coords, xy_copies, axis=0) return xyz_coords
[docs]def matching_sites(position, comparators, tol=1e-8): """Get the indices of all points in a comparator list that are equal to a given position (with a tolerance), taking into account periodic boundary conditions (adaptation from Pymatgen). This will only accept a fractional coordinate scheme. Parameters ---------- position : list (3,) Fractional coordinate to compare to list. comparators : list (3, n) Fractional coordinates to compare against. tol : float Absolute tolerance. Returns ------- match : list (n,) Indices of matches. """ if len(comparators) == 0: return [] fdist = comparators - position fdist -= np.round(fdist) match = np.where((np.abs(fdist) < tol).all(axis=1))[0] return match
[docs]def matching_coordinates(position, comparators, tol=1e-8): """Get the indices of all points in a comparator list that are equal to a given position (with a tolerance), taking into account periodic boundary conditions (adaptation from Pymatgen). This will only accept a Cartesian coordinate scheme. TODO: merge this with matching_sites. Parameters ---------- position : list (3,) Fractional coordinate to compare to list. comparators : list (3, N) Fractional coordinates to compare against. tol : float Absolute tolerance. Returns ------- match : list (N,) Indices of matches. """ if len(comparators) == 0: return [] fdist = comparators - position[None, :] match = np.where((np.abs(fdist) < tol).all(axis=1))[0] return match
[docs]def get_unique_coordinates(atoms, axis=2, tag=False, tol=1e-3): """Return unique coordinate values of a given atoms object for a specified axis. Parameters ---------- atoms : object Atoms object to search for unique values along. axis : int (0, 1, or 2) Look for unique values along the x, y, or z axis. tag : bool Assign ASE-like tags to each layer of the slab. tol : float The tolerance to search for unique values within. Returns ------- values : ndarray (n,) Array of unique positions in fractional coordinates. """ positions = (atoms.get_scaled_positions()[:, axis] + tol) % 1 positions -= tol values = [positions[0]] for d in positions[1:]: if not np.isclose(d, values, atol=tol, rtol=tol).any(): values += [d] values = np.sort(values) if tag: tags = [] for p in positions: close = np.isclose(p, values[::-1], atol=tol, rtol=tol) tags += [np.where(close)[0][0] + 1] atoms.set_tags(tags) return values
[docs]def get_integer_enumeration(N=3, span=[0, 2]): """Return the enumerated array of a span of integer values. These enumerations are limited to the length N. For the default span of [0, 2], the enumeration equates to the corners of an N-dimensional hypercube. Parameters ---------- N : int Length of enumerated lists to produce. span : list | slice The range of integers to be considered for enumeration. Returns ------- enumeration : ndarray (M, N) Enumeration of the requested integers. """ if not isinstance(span, slice): span = slice(*span) enumeration = np.mgrid[[span] * N].reshape(N, -1).T return enumeration